
tDOM – A fast XML/DOM/XPath package for Tcl wr itten in C1

Jochen Loewer (loewerj@hotmail.com)

Abstract

The design, implementation and use of the tDOM package for the scripting language Tcl [9] is
explained in this article. tDOM extents Tcl with features to handle and manipulate data and
documents available in XML efficiently and easily, since tDOM is written in plain C and offers
an object−oriented interface for manipulating the document objects in memory using standard
DOM[4] methods. Beside the standard XML parser Expat[16], tDOM provides his own simple
but fast XML parser, which directly builds up a DOM tree from the information in the parsed
XML. In addition to XPointer−like navigation methods, the implementation of a complete
XPath query engine in fast C enables the users of tDOM to easily write compact and expressive
script code. It is further shown how to use the different tDOM methods/function in the various
XML processing tasks like parsing/DOM build, serializing DOM, navigation within the DOM
tree and modifying it. At the end some future enhancement are presented like DTD parsing,
XPath extension functions, XML namespace support and XSLT.

1. Introduction

tDOM is a package for Tcl for easy and powerful XML/DOM processing with an extra focus on
expressiveness and performance. In early 1999 a new upcoming project, which uses structured,
hierarchical data serialized in XML, triggered an investigation on which tools for XML/DOM
processing are available for Tcl, which was the desired implementation language, since it was well
established in our group and proven to be easy to code and at the same time powerful.

At that time frame only TclXML/TclExpat and TclDOM from Steve Ball [1][2] were available. The
projects required the use of DOM − just relying on event based XML parsing (SAX) would have been
too complex and verbose in coding.

So TclExpat/TclXML alone wouldn’ t do the job. TclDOM implemented DOM, but beside the fact that it
was implemented in plain Tcl and therefore quite slow and memory hungry, it just provided a DOM
functionality in very Tcl−like and verbose calling syntax and didn’ t offer any advanced navigation and
query features like XPointer or XPath.

Easy writeable, readable, compact and expressive code which follows the DOM recommendation’s
syntax closely was one for our major objective. In this way the gained knowledge of the developers
about XML/DOM could be re−used in future projects, which might be implemented in other languages.
Support for Unicode/UTF−8 wasn’ t a requirement, since we even want to stay with Tcl8.0.5.

So the decision was made to start the development of a fast DOM implementation for Tcl in C. Expat
was initially taken as the XML parser since it was freely available and proven to be fast, reliable and
standard conform. We also integrated/kept Steve Balls TclExpat, which provides a good event−
based/SAX−like XML parser to Tcl. At that time libxml, a library developed for the GONME desktop,

1 tDOM can be found at http://sdf.lonestar.org/~loewerj/tdom.cgi

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 1 of 19

showed up. libxml [19] was quite promising (own XML parser, own DOM, all written in plain C, a
good C API, begin of an XPath implementation), but the initial license was to restrictive (note:
Currently libxml can also be used under more liberal W3C license).

So the main design goals had been:

�

closely follow DOM recommendation
�

easy to use, compact and expressive OO−like syntax
�

enhanced navigation and manipulation features like XPointer searches, if possible XPath queries).
�

fast parsing/DOM build up and fast serializing (DOM−>XML) to allow the information be
transmitted between database, application server and client in plain XML and to be stored in simple
BLOBs within the database in XML (fast parsing/load leads to a simplified architecture)

During development of the DOM objects special effort was made to ensure that the DOM structure
require as few memory as possible, since later there could be many for these DOM node in memory
affecting overall performance, if they consume too much memory.

With the later introduced simple XML parser, the load time on an DOM tree into memory could be even
improved by factor two compared to the full−featured Expat parser.

The resulting great performance (~2 msec DOM built up time for 5K DOM tree on medium size
machines) kept the architecture of first very big project (40k lines of code), which was based on tDOM
quite simple:

HTML
to
browser

RPCs over IIOP

Application Server

::

Key1 Key2 ... KeyN XML Blob

tDOM sqliioprpc

fetch/store
hierachical data as
XML from/in blob

Table in database with XML blob and some index keys

API a

API b

API c

Web Server

tDOM iioprpc

scalar data
and XML

Tcl CGI n

Tcl CGI 1

DOM tree

DOM tree

Figure 1: Larger project which uses tDOM

In that project world−wide complex configuration information for systems, kept in XML, is stored in
BLOBs together with indexable search fields in a database. An application server or an API library
provide a certain number of dedicated APIs, which load the raw XML from the BLOB in the database
into the in−memory DOM and processed that DOM or return (part of) the data again as XML. The client
side accesses the application server through remote procedure calls over IIOP and retrieve either scalar
result values or XMLs. In this architecture there are several points where the DOM tree needs to be
created out of the XML blob information. Using tDOM this never turned out to be the bottleneck.

In a different, smaller application, tDOM is used in a more dynamic way. The application acts as a
middleware between an SAP R/3 instance and a another business server, which offers its business logic
using XML as the request and reply format. Developers on the SAP side want to access this external
business logic just using a normal ABAP/4 function call. The Tcl application server therefore connects
to the SAP system through the RFC library (Remote Function Calls, basis for SAP BAPIs) and registeres
a function within the R/3 system. When ABAP/4 programs then call that function a Tcl function is
remotely

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 2 of 19

executed on the application server side. This Tcl function retrieves the calling parameters/tables,
constructs a DOM document in memory according to the XML request specification of the business
server and transmits the serialized DOM as XML over a publish/subscribe middleware (ActiveWeb) −
this done all in plain Tcl. The response XML is parsed into a result DOM. Then all necessary
information is extracted out of that DOM into some ABAP RFC export parameters and the SAP call is
finished.

RFC
protocol

response XML

request XML

Tcl−SAP−Connector

tDOM
libRFC

SAP R/3

libRFC

package rfc

ABAP/4:

CALL FUNCTI ON
 Get _I nf o
DESTI NATI ON
 Tcl SAPConnect or

Legacy system

Business
Logic

pr oc Get _I nf o {
 get SAP dat a
 bui l d XML r eq
 cal l ser ver
 par se XML r esp
 set SAP dat a
}

RFC client RFC server Business logic
client

Business logic
server

Figure 2: TclSAPConnector which converts RFC call in XML

This middleware application does basically the same thing as SAP BusinessConnector (webMethods)
does (beside the nice web administration front end).

2. Achitecture

For a closer look at tDOM architecture look at Figure 3. As mentioned earlier, tDOM comes with a
(modified version) of Expat. Expats works as the XML parser, which translates all possible incoming
encoding internally into Unicode and outputs always UTF−8 encoded text. Expat interfaces to other
components using callback functions, which are invoked based on XML parsing events (~ SAX like
interface).

In tDOM two components are based upon Expat and install callback functions in Expat. Steve Balls
TclExpat (t c l expat . c) is the first one. It provides the event−based XML parsing on Tcl level. The
original TclExpat code was improved to gain performance by restricting the callback functions to be just
simple Tcl procedure.

The original Tclexpat code allowed Tcl procedures plus some fixed parameters as well. Unfortunately
this causes an extra evaluation on Tcl execution level for each call and since this will be done for each
single element or text node, this extra work will sum up.

The other component which interfaces to Expat via callbacks is the DOM builder (in dom. c). It will
create the DOM structures in memory as a side effect during XML parsing.

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 3 of 19

Xpointer

 Expat xml par se. c

XML
Simple

xml s i mpl e. c

XPath
parser
and

query engine

domxpat h. c

DOM on Tcl level t c l dom. cSAX
on
Tcl

level

t c l
expat . c

application

SAX −−> DOM builder

DOM dom. c

~ SAX

Figure 3: tDOM module architecture

Another way to build a DOM tree in memory is to use the simple XML parser (xml s i mpl e. c). This
simple, restricted XML parser, based on an old XML parser from Dr. Richard Hipp, is basically one big
C function, which parses the XML input without recursion/need of the C stack and directly builds up
DOM structures.

In other words, when compared to Expat, the extra layer with the installable callback functions between
the XML parser and the DOM builder functions is completely eliminated. This fact, as well as the non−
recursive implementation of the simple XML parser, result in about twice the performance of the
Expat+DOM builder bundle. The simple XML parsers handles all important XML features, like
elements, attributes, comments, CDATA sections, processing instructions and the default entity
replacements (& "e; & lt; > &27; ...) correctly. It misses complete entity reference
replaceements, DTD parsing and encoding conversion. Text is just left untouched.

The dom. c module contains all the code to create/delete the DOM structure in memory. Here special
effort was made to keep the memory requirements for the DOM structure as low as possible. The less
memory is needed for the DOM tree, the greater the performance will be and the more DOM objects can
be handle in memory at once. There are special structures defined in dom. h, which represent different
DOM objects like element nodes, text/comment or CDATA nodes, processing instruction and attribute
nodes in the individual minimum way. the definition of element nodes, text/comment or CDATA nodes
and PI nodes share a standard header of fields like nodeNumer, nodeType, ownerDocument. After this
common header there are the object specific fields. This will allow to apply specific casts in C code in
order to access the right fields for individual objects.

Since only some applications like a XML editor would also like to store the line/column information
within the original parsed XML document in the DOM structure, there exists special extension structures

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 4 of 19

for the element and text/comment nodes. A bit in the nodeFlag field indicates the availabilty of
line/column information.

elementName
Tcl Hashtable

domNode

docNumber

fragments

documentElement

domDocument

nodeNumber

nodeType + Flags

ownerDocument

parentNode

previousSibling

nextSibling

nodeName

firstChild

lastChild

firstAttr

lastAttr

domTextNode

nodeNumber

nodeType + Flags

ownerDocument

parentNode

previousSibling

nextSibling

nodeValue

valueLength

domAttrNode

nodeName

nodeValue

valueLength

parentNode

nextSibling

.

.
tag1
.
.
tag2
.
.

attr ibuteName
Tcl Hashtable

.

.
attr1
.
.
attr2
.
.

line

column

line

column

Figure 4: DOM object structures in memory

The element names and the attribute names are not store every time as an individual string together with
the element or attribute node. Instead, they are stored once in a Tcl hash table and just the reference to
the hash entry is stored in the DOM structure. This will further reduce memory requirements, since quite
often the same tag or attribute names occure mutiple times.

Above the plain DOM layer, several XPointer navigation functions like child, psibiling, fsibling and
descendant are implemented in dom.c. Since they are coded in C and operate directly on the DOM
fields, they provide a very fast way to traverse and search the DOM tree, but offer only a subset of the
XPath query features.

Beside the partial XPointer implementation there is an almost complete implementation of the XPath
recommendation (domxpat h. c). It contains a lexer and a parser to the parse the queries in the XPath
syntax and a query engine, which uses the query plan based on the abstract syntax tree to retrieve the
result of the given query by searching through the given DOM (sub)−tree. The lexer and parser are
hand−written, so no compiler tools like (f)lex and yacc/bison have to be used.

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 5 of 19

ownerDocument

next/prevSibling

documentElement

firstChild

next/prevSiblingfragments ELEMENT_NODEdocument

ELEMENT_NODE

PI_NODE

TEXT_NODE

ELEMENT_NODE ELEMENT_NODE

ELEMENT_NODE

lastChild

firstChild

ELEMENT_NODE

ELEMENT_NODE ELEMENT_NODE

lastChild

parentNode

first/lastChild

first/lastChild

Figure 5: Links between DOM objects for a document

On top of the DOM, XPointer and the XPath layer there is the main Tcl DOM interface layer, which
exports all the DOM/XPointer/XPath methods to the Tcl language level. It handles the link between
basic memory address of DOM objects and the corresponding Tcl objects (object commands) as well as
allocation/free of these object based on Tcl variable scopes. i.e. if an DOM docuemnt is bound to a Tcl
variable on Tcl level and this Tcl variable will later automaticallybe freed, because the procedure is left,
for example, the underlying DOM document is also freed.

tDOM is a relatively compact package in both C code size and object code size. This makes it well
suited for embedded applications. With tDOM−0.5 it will be possible to compile tDOM without Expat
support.
A system having the simple XML parser, DOM, XPointer, a full XPath implementation and the Tcl
binding layer will just be around 80k binary code.

Code sizes for i386 code:

xmlsimple.o <= 6 kB

dom.o <= 11 kB

domxpath.o <= 32 kB

tcldom.o <= 32 kB

<= 81 kB

xmlparse.o 32 kB

xmlrole.o 12 kB

xmltok.o 100 kB

145 kB Expat

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 6 of 19

3. How−to use tDOM

The next sections will focus on the usage of tDOM separated into certain topics. Beside that information
the tDOM documentation (the documentation is in XML, precisely TMML, which was converted to
HTML using tDOM’s tmml2html convert) should be contacted to get syntax and usage of all available
methods.

Parsing / XML loading / DOM build up

To access data stored in XML document, parsing the document and building up a DOM tree in memory
are the most important things to do. Since this article focuses on DOM manipulation the event−based /
SAX−like parsing using just the TclExpat features is not discussed here in detail (consult the tDOM
documentation or TclXML [1] if more information is needed).

For parsing a document and building up the in−memory DOM tree multiple ways exists:

 package r equi r e t dom

 # r ead t he XML document f or a f i l e i n one chunk
 set s i ze [f i l e s i ze $xml Fi l e]
 set f d [open $xml Fi l e]
 set xml [r ead $f d $si ze]
 c l ose $f d

 1 dom set Resul t i ngEncodi ng i so8859−1
 set doc [dom par se $xml]

 2 set doc [dom par se −si mpl e $xml]

 3 dom par se −keepEmpt i es $xml doc

In the above examples 1 and 3 uses Expat as underlying XML parser, which handles all the XML
features. since internal Expat will always output UTF−8 encoded texts, a back conversion to 8bit
character encoding can be made to enable tDOM to be used also in Tcl8.0 environments. With
’setResultEncoding’ you can specify the output 8−bit character encoding (possible values are ascii,
cp1250, cp1251, cp1252, cp1253, cp1254, cp1255, cp1256, cp437, cp850, en, iso8859−2, iso8859−3,
iso8859−4, iso8859−5, iso8859−6, iso8859−7, iso8859−8, iso8859−9, koi8−r). If you leave
’setResultEncoding’ or use ’utf−8’ you’ ll get the direct Expat UTF−8 encoded text back. Possibility 2
makes use of the fast simple parser, which should provide double the Expat performance and leave the
original text encoding as it is.

Per default text nodes, which contain just white spaces (space, tab, newlines) are not created at DOM
build time. This is to able to store structure data in a pretty printed XML version:

 <t ag1>
 <t ag2/ >
 </ t ag1>

This would result in that DOM tree structure:

 o t ag1
 |
 +−−o t ag2

A one to one serialization of that DOM tree would output following XML:

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 7 of 19

 <t ag1><t ag2/ ></ t ag1>

since there is no text between the two tags. If the −keepEmpt i es option is given, the following DOM
will be generated:

 o t ag1
 |
 +−−o t ext Node " \ n "
 |
 o t ag2
 |
 o t ext Nde " \ n"

Memory handling / Automatic Free

In the above parsing examples two different return styles are used. The first two examples (1, 2) build up
the DOM tree in memory and return a Tcl command name, which represents that tree in the Tcl world.
This command is assigned to a Tcl variable as a string for later use.

The last example (3) specifies the Tcl variable as the last, additional argument. In this case tDOM can
set the DOM document command name to that given Tcl variable and registers a deletion callback at the
same time. This will trigger a deletion of the whole DOM tree at each time Tcl tries to delete the
variable, either because of we left a procedure and all local variable are automatically freed or an
explicit ’unset doc’ forced a deletion.

 pr oc f oo { xml } {

 dom par se −si mpl e $xml l ocal Doc

 set r oot [$l ocal Doc document El ement]
 . . .
 . . . (ext r act dat a f r om t he DOM)
 . . .

 r et ur n <−−− here the Tcl var localDoc as well the
 complete DOM document will be freed
 }

 pr oc get Doc { xml } {

 set doc [dom par se −si mpl e $xml]

 r et ur n $doc
 }
 set doc [get Doc $xml]

 . . .
 . . . use $doc her e, pass i t t o f unct i ons, et c.
 . . .

 $doc del et e <−−− forces an explicit free

Depending on where and what is later done with the returned document handle choose one of the
available methods. If the document handle should be returned to the calling level and is then used later
in different calling level, you should you use the ’ set doc [dom par se $xml] ’ method. But don’
forget to do a $doc del et e later one. In all other cases you could use the other method, which frees
you of remembering to delete the document explicitly and therefore avoids memory leaks.

Call Syntax

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 8 of 19

tDOM provides two different calling syntax for invoking the DOM methods on DOM objects. The first
and easiest and natural one is a object−oriented or iTcl/Tk like way. Here tDOM creates Tcl command
with standard prefix and increasing number which represent object in the DOM:

 domDoc<N> f or DOM document obj ect s
 domNode<N> f or al l nodes (el ement , t ext , comment , PI)

 N is a number 1..

The basic calling syntax is like in iTcl/Tk;

 $obj met hod ar g1 ar g2 . . .

domNode<N> commands are not created in advance at DOM build time. There are only created on
request, for example hen a DOM navigational method return that object.

 % set doc [dom par se $xml]
 domDoc1

 % set r oot Node [$doc document El ement]
 domNode1

% domNode2 nodeType <−−− domNode2 command has not been created
yet
 i nval i d command name " domNode2"

 % set chi l d [$r oot Node f i r s t Chi l d] <−−− return reference to domNode2
 will create a command
 domNode2

 % domNode2 nodeType
 ELEMENT_NODE

There are no attribute, NamedNodeMap or DocumentFragaments objects as in the original DOM
recommendation. All these objects are handled using basic Tcl objects (Tcl lists) or their methods are
accessible through some methods in the node object:

 % set doc [dom par se " <t ag a=’ 1’ b=’ 2’ c=’ 3’ / >"]
 domDoc2
 % set r oot [$doc document El ement]
 domNode5
 % $r oot at t r i but es
 a b c

The other builtin calling syntax for DOM nodes is more Tcl’ ish:

 domNode $nodeHandl e met hod ar g1 ar g2 . . .

Here there is one (class) command, which requires a DOM node object command name or DOM node
reference name in form domNode0x<addr> as the first argument. The second argument is the method;
all following arguments are method arguments.

 % dom par se " <t ag1><t ag2/ ></ t ag1>"
 domDoc1

 % domDoc1 document El ement
 domNode1

 % domNode domDoc1 f i r s t Chi l d
 domNode0x40023098

 % domNode domNode0x40023098 par ent Node
 domNode0x40022f d8

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 9 of 19

 % domNode0x40022f d8 f i r s t Chi l d
 i nval i d command name " domNode0x40022f d8"

Since this dangerous calling method saves just a few percent of the total execution time (by avoiding
command creation) the easier to use and to handle first OO−like calling syntax should be used.

tDOM’s unknown

tDOM renames the normal Tcl unknown command and provides his own unknown command, which
enables the user together with the DOM and XPointer methods to write complex DOM/XPointer
expression in direct XPointer notation or use just a more convenient syntax for nested DOM methods,
as
some one is used to have in C++ or Java.

 1 set t agName [[[$node chi l d 1 event t ype] f i r s t Chi l d] nodeName]

 2 set t agName [$node. chi l d(1, event , t ype) . f i r s t Chi l d. nodeName]

Serialization

For serializing the in−memory DOM tree again into XML the standard DOM recommendation offers no
methods. tDOM extents the node object interface with two fast serialize methods ’asXML’ and ’asList’
(see Figure 6):

 % set doc [dom par se " <t ag1><t ag2/ ></ t ag1>"]
 domDoc1
 % set r oot [$doc document El ement]
 domNode1

 % $r oot asXML
 <t ag1>
 <t ag2/ >
 </ t ag1>

 % $r oot asXML −i ndent 1
 <t ag1>
 <t ag2/ >
 </ t ag1>

 % $r oot asLi st
 t ag1 { } { { t ag2 { } { } } }

asXML operates on any (sub)−element and outputs therefore a XML subdocument without the <?xml
version="1.0"?> header. This has just to be prepended in order to reproduce the original XML document
again.

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 10 of 19

serializing the DOMparsing / DOM creation

SAX

dom par se –si mpl e $xml

DOM

Expat
DOM
builder

XML
as string

XML
as string

$node appendXML

XML
fragment
as string

SAX
Expat

DOM
builder

dom appendFr omLi st

Tcl list −−> DOM
XML
fragment
as TclIst

dom par se –ht ml $ht ml

htmlsimpleHTML
as string

DOM −−> XML
<t ag a1=” b” >
 <t ag2/ >
</ t ag>

asXML ?−i ndent 4?

DOM −−> Tcl list
{ t ag { a1 b}
 { t ag2 { } { } }
}

asLi st

DOM −−> HTML
DOM −−> WBML

<t ag a1=” b” >
 <t ag2>
</ t ag>

asHTML
asWBML

xmlsimple

dom par se $xml

Figure 6: Creation and Serializing of DOM trees

Beside the serialization methods there also exists two helper methods, which provide a convenient way
to append a subtree/document fragment to node from a XML string representation or the DOM Tcl list
serialization:

 % $r oot appendXML " <newTag a=’ 1’ / >"
 domNode1

 % $r oot asXML
 <t ag1>
 <t ag2/ >
 <newTag a=" 1" / >
 </ t ag1>

 % $r oot appendFr omLi st { secondTag { at t r val ue b 2}
 { { t hi r dt ag { } { } }
 }
 }
 domNode1
 % $r oot asXML
 <t ag1>
 <t ag2/ >
 <newTag a=" 1" / >
 <secondTag at t r =" val ue" b=" 2" >
 <t hi r dt ag/ >
 </ secondTag>
 </ t ag1>

In future serialization to HTML or WAP’s WBML could be implemented.

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 11 of 19

DOM Manipulations − Document Fragment List

Methods for creation/removing/replacing/cloning of nodes create nodes, which are not yet part of the
document tree, but part of the document. In order to be freed later, when the document is freed, these
unlinked nodes are added to a hidden document fragment list. Methods, which append or insert nodes
into the tree structure require the nodes to be taken from that document fragment list.

 % set doc [dom par se \
 { <t ags>
 <f i r s t _chi l d/ >
 <second_chi l d at t r 1=" val ue1" >
 <gr andchi l d1/ >
 <gr andchi l d2 at t r 2=" val ue2" / >
 </ second_chi l d>
 <t hi r d_chi l d>
 <gr andchi l d3 at t r 1=" val ue1−3" / >
 </ t hi r d_chi l d>
 </ t ags>}]

 % set r oot [$doc document El ement]
 domNode1
 % set secondChi l d [$r oot descendant al l second_chi l d]
 domNode4

 1: % $r oot r emoveChi l d $secondChi l d
 domNode4

 % $r oot asXML
 <t ags>
 <f i r s t _chi l d/ >
 <t hi r d_chi l d>
 <gr andchi l d3 at t r 1=" val ue1−3" / >
 </ t hi r d_chi l d>
 </ t ags>

 % set t hi r dChi l d [$r oot sel ect Nodes / / second_chi l d]
 domNode6

 2: % $t hi r dChi l d appendChi l d $secondChi l d
 % $r oot asXML
 <t ags>
 <f i r s t _chi l d/ >
 <t hi r d_chi l d>
 <gr andchi l d3 at t r 1=" val ue1−3" / >
 <second_chi l d at t r 1=" val ue1" >
 <gr andchi l d1/ >
 <gr andchi l d2 at t r 2=" val ue2" / >
 </ second_chi l d>
 </ t hi r d_chi l d>
 </ t ags>

 3: % $t hi r dChi l d appendChi l d $secondChi l d
 HI ERARCHY_REQUEST_ERR

At 1: the complete subtree starting with the node with nodeName ’second_child’ is moved into the
hidden document fragments list. The removed subtree doesn’ t show up anymore when the DOM tree is
serialized to XML afterwards. In 2: the removed subtree is appended to the childs of the node with
nodeName ’ thirdChild’ . A printing of the DOM tree as XML shows, that the complete subtree moved
under the ’ third_child’ tag. If accidentally the subtree is tried to be appended a second time, the DOM
exception ’HIERARCHY_REQUEST_ERR’ will be raised.

Xpointer Navigation

The DOM recommendation provides just the most primitve methods to jump from one node to the next
(fristChild,nextSibling,parentNode). The most sophisticated method getElementsByTagName just

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 12 of 19

retrieves all descendant elements which match the given tag name. In order to provide more advanced
select/filter or query functionalities to applications some complex recursive search functions have to be
implemented in Tcl. Having a recursive Tcl function visiting all node of an DOM tree could be quite
expensive. At least this function won’ t be used for every simple DOM node lookup. The old XPointer
working draft [18] specifies some advanced navigation function, which are implemented in tDOM using
very fast recursive C
functions. They should be the faster possibility to navigate through the complete DOM hierachy:

 chi l d number | al l ?t ype? ?at t r Name at t r Val ue?

This will return all child nodes or a specific one, which match a certain node types (#text,
#cdata, #element or #all) and optional also have a certain attribute with a certain value.
Examples

 $node chi l d 2 event

will return the second event child node

 $node chi l d −1 event dat et i me 20000511

will return the last event child node, which has an attribute event with a value ’20000511’

 $node chi l d al l #t ext

will return the all text child nodes

 f s i bl i ng number | al l ?t ype? ?at t r Name at t r Val ue?
 psi bl i ng number | al l ?t ype? ?at t r Name at t r Val ue?

similar to child, but they will query upon all following sibling or perceeding siblings.

 ancest or number | al l ?t ype? ?at t r Name at t r Val ue?

will walk up the parentNode hierarchie until a match is found

 descendant number | al l ?t ype? ?at t r Name at t r Val ue?

will do a depth−first search down the subtree applying the same filter/select logic as the child
method. When a node is found, which matches the select criterias the tree traversal is stop here,
i.e. no deeper node are visited. This is different to the //<tag> XPath expression, which is
described later, which returns all matching nodes in any depth.

XPath Queries

While the Xpointer navigation methods provide some enhanced search feature with a somehow fixed
query/filter expression, XPath [7] allows very complex and compat queries within of one DOM tree
comparable to advanced SQL where clauses. domxpath.c in tDOM, the most complex module within
DOM, contains a lexer, a parser for the XPath language and a fast query engine. Currently it provides an
almost full XPath implementation, without the namespace and id functions.

To make extensive use of XPath expression in your Tcl code, could greatly ease up and improve code
development, while still being a very fast way to extract data form part in the DOM tree. The
selectNodes method is the method to evalute a DOM on a subtree:

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 13 of 19

 $node sel ect Nodes <XPat hSt r i ng> ?r esul t Type?

XPath allows different types for an result of a XPath query depending on the given query:

 empty selectNodes returns a empty list
 bool selectNodes returns 0 or 1
 number selectNodes returns either an integer or a float value
 nodes selectNodes returns a list of nodes (i.e. names
 of domNode<n> commands)
 attrnodes selectNodes returns a list of attrName attrValue pairs (like Tcl array get)
 attrvalues selectNodes returns a list of attribute values

Here are some examples:

 This will loop overall event elements, which have a attribute with the value "server1":

 f or each event [$node sel ect Nodes { / / event s[@or i gi n=" ser ver 1"] } {
 }

 The result was a node list.

 This will loop overall event elements which have a attribute with the value "server1" and
 have a severity subelement, which has an attribute ’ type’ with value ’critical’

 f or each event [$node sel ect Nodes { / / event s[@or i gi n=" ser ver 1"]
 [sever i t y [@t ype=" cr i t i cal "] }
{
 }

 This will count all the count the number of critical events using the the standard count()
 function of XPath:

 set nr Cr i t [$node sel ect Nodes { count (/ / event s[sever i t y [@t ype=’ cr i t i cal ’]
 }]

 The result is a integer.

tDOM ships also with XE. XE is a Tk application, that allows in an easy way the evaluation of XPath
queries on local or remote (fetch via HTTP from a server/database for example) XML documents. It
formats the result nicely on the result pane and enables to browse/navigate through the sub DOM trees
(see Figure 7).

As a big test XML database, tDOM contains a copy of the european XML Mondial database [1111],
which contains data about countries/states/mountains/population assembled from many source, mainly
the CIA world fact book.
Using the Mondial database the power of XPath queries can be easily demonstrated:

The query

 / / count r y[name=’ Ger many’] / pr ovi nce[popul at i on>5000000] / name

will return the name tags for all provinces in Germany, which have at least 5 million inhabitants.

The query

 / / mount ai n[i n_count r y[@r ef = st r i ng(/ / count r y[name=’ Ger many’] / @i d]]

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 14 of 19

will return the mountain tag of that mountain, which is in Germany − in XML terms has the same id in
the ref attribute of this in_country child as the id attribute of a county tag with a child with the text
’Germany’ .

Figure 7: Screenshot of XE showing some complex XPath queries

Extension Namespaces

The method dispatching function in tDOM for the domDoc and domNode objects implement an easy to
way to extend these object with new method directly implemented in plain Tcl. If a requested method
can’ t be found in the C code the dispatching logic first tries to look for this kind of Tcl procedure:

 : : dom: : domNode: : <nodeName>: : <met hod>

which is based on the tag name of the element node and the given method.

If this Tcl procedure is found the call

 $nodeNameObj met hod ar g1 ar g2 . . .

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 15 of 19

will be rewritten to

 : : dom: : domNode: : <nodeName>: : <met hod> $nodeNameObj ar g1 ar g2 . . .

So the first is always the ’ this’ object.

This lookup will allow to implement specific element based methods: Element nodes could behave like
instanciated objects from a certain class. Imagine we have a HTML select node and would like to have
convenient methods to add and delete an option, like addOption / deleteOption. These options require
the insertion of a new option tag below the select node.

 % set doc [dom par se " <sel ect / >"]
 % set sel ect Node [$doc document El ement]
 % $sel ect Node addOpt i on opt 1 " Fi r s t Opt i on"
 Usage nodeObj <met hod> <ar gs>, wher e met hod can be:
 . . .
 % pr oc : : dom: : domNode: : sel ect : : addOpt i on { node val ue t ext } {

 set doc [$node owner Document]
 set opt i onNode [$doc cr eat eEl ement opt i on]
 set t ext Node [$doc cr eat eText Node $t ext]
 $node appendChi l d $opt i onNode
 $node appendChi l d $t ext Node
 $opt i onNode set At t r i but e val ue $val ue
 }
 %
 % $sel ect Node addOpt i on opt 1 " Fi r s t Opt i on"
 % $sel ect Node asXML
 <sel ect >
 <opt i on val ue=" op1" / >
 Fi r s t Opt i on
 </ sel ect >

If this procedure isn’ t found in that namespace the method dispatcher tries to lookup this procedure:

 : : dom: : domNode: : <met hod>

This allows to implement new DOM methods first on Tcl level. For example this following procedure
implements the substringData method for the DOM CharacterData interface:

 pr oc : : dom: : domNode: : subst r i ngDat a { node of f set count } {

 set t ype [$node nodeType]
 i f { ($t ype ! = " TEXT_NODE") && ($t ype ! = " CDATA_SECTI ON_NODE") } {
 r et ur n −code er r or " NOT_SUPPORTED_ERR: node i s not a cdat a node"
 }
 set endOf f set [expr $of f set + $count − 1]
 r et ur n [s t r i ng r ange [$node nodeVal ue] $of f set $endOf f set]
 }

 % set doc [dom par se " <t ext >Tcl and Tk</ t ext >"]
 % set node [$doc document El ement]
 % set t ext Node [$node f i r s t Chi l d]

 % $node subst r i ngDat a 8 2
 NOT_SUPPORTED_ERR: node i s not a cdat a node

 % $t ext Node subst r i ngDat a 8 2
 Tk

For the document object (domDoc<n>) a different namespace is search for method dispatching:

 : : dom: : domDoc: : <met hod>

For the DOMImplementation (factory) object, the Tcl function dom, the namespace for method
dispatching is:

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 16 of 19

 : : dom: : DOMI mpl ement at i on: : <met hod>

4. Future enhancements

The following is a list of planned or just possible future enhancements, which are roughly ordered by
urgency and ease of implementation:

• store compiled XPath query plans (abstract syntax tree) in dual−ported Tcl Object for caching.
• XPath extension functions

The XPath recommendation describes how specific implementation could extent the XPath
query engine by functions, implemented outside the query engine – in the case tDOM in plain
Tcl. It is expected that tDOM−0.5 will contain that feature. As an example imagine an XML−
enabled application, which has the need the count the distinct number for certain tags.

 set cr i t i cal Event s [$node sel ect Nodes / / event [@dat et i me=’ 20000615’]

This will not work , if the attribute datetime contains dates or datetimes in different formats like
‘2000−06−15 12: 31’, ‘20000615’, ‘20000702 02: 27: 33’ or even ‘06/ 15/ 2000 12: 31’.

To use the simple XPath query from above the datetime has to be converted/unified first. So
if we would have a XPath function dat e() this query would work:

 set cr i t i cal Event s [$node sel ect Nodes \
 / / event [dat e(@dat et i me) =’ 20000615’]

This could be implemented with the XPath extension namespace in tDOM−0.5 in the following
way:

pr oc : : dom: : xpat hFunc: : dat e { c t xNode pos nodeLi st Type nodeLi st ar gs } {
 i f { [l l engt h $ar gs == 2] } {
 f or each { t ype val ue} $ar gs br eak
 swi t ch $t ype {
 s t r i ng –
 at t r val ues {
 # f or t hese t ype dat e() i s def i ned
 br eak
 }
 def aul t {
 # f or t he t ypes empt y/ bool / number / nodes/ at t r nodes
 # dat e() i s not def i ned
 r et ur n –code er r or “ bad ar gument t ype”
 }
 }
 # now act ual l y conver t t he dat e st r i ng
 set conver t edDat e [Uni f yDat e $val ue]

 # r et ur n a st r i ng obj ect back t o t he XPat h quer y engi ne
 r et ur n [l i s t s t r i ng $conver t edDat e]

 } el se {
 r et ur n –code er r or “ wr ong number of ar gs: dat e(x) ”
 }
}
The XPath has a generic C callback interface for pluging in new functions. tDOM−0.5 will
provide a Tcl mapping using that callback interface.

• XML−Namespace support in the DOM
As the use of XML documents with XML namespace continues to grow and since newer
standards like XSLT completely rely on namespaced tags, namespace support in tDOM and its
underlying C structures become more and more important. tDOM−0.5/0.6 will hopefully only
slightly extend the DOM memory structures in order to hold the XML namespace information.

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 17 of 19

The idea is to keep the memory requirements as low as possible. On the Tcl level the DOM
level 2 method should be available then.

• make DTD information available
Scriptics has already modify the original Expat parser to invoke callback when DTD
information is processed. This included element definition and restricted attribute definition. To
have the DTD information available enables quite a lot of further capabilities, like XML
validation or the generation of dedicated load/serialize functions (a DTD −> Tcl compiler,
which outputs tailored Tcl code for certain XML−aware business objects). Before tDOM−0.5
some effort was made the further extent the Expat parser based on the Scriptics changes. In the
mean time Perls XML−Parser−2.29 comes with an extended Expat parser as well, which has all
the needed features. Therefore tDOM−0.5/0.6 might use the Expat code from XML−Parse−
2.29.

• HTML parser / Tidy integration
To be able to parse existing HTML code and build up a DOM tree, enables a rich set of
application which extract /condense/mediate/index information on the internet, when combined
with Tcl scripting and XPath queries. Things like webMethods WIDL [11] could be easily
implemented. The HTML parser could be taken from Tidy[12], which is implemented in C, but
also provide some warning/rewriting tips while parsing bogus HTML. A Tcl−fied Tidy would
provide the basis for tools like a ‘TkTidy’.

• HTML serializer (($node asHTML) for XML −> DOM −> docProcessor −> HTML converters
• WBML serializer ($node asWBML) for WAP devices
• XPath query engine performance improvements (keep already evaluated sub−expressions as in

/ / mount ai n[i n_count r y[@r ef = st r i ng(/ / count r y[name=’ Ger many’] / @i d)]] , use tag/attribute
occurence list/index)

• provide TclDOM compatibility mode
In order to re−use all the existing code developed using TclDOM and to gain execution speed,
all compatibility layer above tDOM written in Tcl would be desirable. tDOM has already a
simple Tcl like (non OO like) calling interface, which should provide an easy way to simulate
the TclDOM calling interface.

• persistent DOM / XML database/store
In order to avoid the sometimes time consuming part of parsing serialized DOM tree from a
externally stored XML document and building the DOM tree in memory again and again, the
DOM could be made persistent once. All the tDOM DOM operations as well the XPath queries
will then be evualated on top that persistent DOM tree later on. Some experiments with
memmory mapped files (mapped a fixed locations) and malloc/free replacement functions,
which operated on that shared memory, showed already good results for Tcl array like
persistent data structures, even in a multi−user/process environment. The fixed memory
mapped files make the interface simple and shift the burden of memory/disc optimization to the
operating system. With 64−bit operating systems with a large virtual address space (HP/UX 11,
...) the fixed location shouldn’t be a problem anymore.

• XML−RPC / SOAP /XIOP implementation
• XSLT written in Tcl or even better in plain C
• implement a MOM, a message oriented middleware, re−using the www.xmlBlaster.org ideas and

the tDOM DOM and XPath features.
• make virtual DOM trees avialable for content/database/legacy system intregation (like Tamino’s X−

Node machine[13], TSIMMIS/Garlic’s mediators [14][15])
If DOM nodes are not just fixed structures, but evaluted/generated on the fly using adaptor or
mediator functions contacting different (remote) sources like databases/legacy systems, the
tDOM navigation functions (firstChild, getElementsByName) and XPath queries could be
applied on top these uniformed DOM tree.

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 18 of 19

5. References

[1] Steve Ball; TclXML; http://www.zveno.com/zm.cgi/in−tclxml
[2] Steve Ball; TclDOM, http://www.zveno.com/zm.cgi/in−tclxml/in−tcldom
[3] Carsten Zerbst; XML−Programmierung; iX 2/2000, page 132;
 http://www.heise.de/ix/artikel/2000/02/132/
[4] W3C; Document Object Model (DOM); http://www.w3.org/DOM/
[5] W3C; Document Object Model (Core) Level 1;
 http://www.w3.org/TR/REC−DOM−Level−1/level−one−core.html
[6] Megginson; SAX 1.0: The Simple API for XML;
http://www.megginson.com/SAX/SAX1/index.html
[7] W3C; XML Path Language Version 1.0; http://www.w3.org/TR/xpath
[8] Brent B. Welch; Practical Programming in Tcl and Tk; Prentice Hall
[9] Mozilla; Introduction to a XUL Document; http://www.mozilla.org/xpfe/xptoolkit/xulintro.html
[10] Comanche, a GUI for Apache; http://www.covalent.net/projects/comanche
[11] webMethods; WIDL http://www.webmethods.com/ ; http://www.w3.org/TR/widl
[12] Tidy; http://www.w3.org/tidy
[13] Software AG; Tamino XML database; http://www.softwareag.com/tamino/
[14] TSIMMIS project; Stanford University; http://www−db.stanford.edu/tsimmis
[15] The Garlic project; IBM Research Almaden;
http://www.almaden.ibm.com/cs/garlic/homepage.html
[16] James Clark; Expat; http://www.jclark.com/xml/expat.html
[17] Wolfgang May; Mondial database in XML;
 http://www.informatik.uni−freiburg.de/~may/Mondial/#XML
[18] W3C; XPointer 97; http://www.w3.org/TR/WD−xml−link−970731

tDOM – A fast XML/DOM/XPath package for Tcl written in C Page 19 of 19

